MATLAB machine learning system for user identification using walking patterns from wearable sensors.
Identifies users based on unique gait patterns using accelerometer and gyroscope data. Extracts 74 features and trains 3 ML models (KNN, SVM, Neural Network) for authentication.
- 6-axis IMU sensor processing (accelerometer + gyroscope)
- 74 time/frequency domain features
- Multiple classifiers: KNN, SVM, FFNN
- Authentication metrics: FAR, FRR, EER
- Automated visualizations and analysis
Requirements: MATLAB R2020b+, Statistics & Machine Learning Toolbox, Deep Learning Toolbox
Run Pipeline:
% Execute all scripts in order
scripts = {'config', 'segment', 'preprocess_features', 'build_dataset', ...
'train_models', 'evaluate', 'user_thresholds', ...
'feature_analysis', 'generate_visualizations'};
for i = 1:length(scripts), run(scripts{i}); end├── config.m # Configuration
├── segment.m # Window segmentation
├── preprocess_features.m # Feature extraction (74 features)
├── build_dataset.m # Normalization & train/test split
├── train_models.m # KNN, SVM, FFNN training
├── evaluate.m # Metrics & confusion matrix
├── user_thresholds.m # Per-user EER thresholds
├── feature_analysis.m # PCA, ANOVA analysis
├── generate_visualizations.m # All plots
├── data/ # 10 users × 2 sessions (FD/MD)
└── results/ # Outputs (metrics, plots)
Input: CSV files with 6 columns (Accel XYZ, Gyro XYZ)
Naming: U<ID>NW_<Session>.csv (e.g., U1NW_FD.csv)
FD= First Day (training)MD= Middle Day (testing)
- KNN - k-nearest neighbors with cross-validation
- SVM - RBF kernel with ECOC multi-class
- FFNN - Neural network [128-64-32] layers
- Classification: Accuracy, Precision, Recall, F1-Score
- Authentication: FAR, FRR, EER per user
- Visualizations: PCA, confusion matrix, feature importance
Edit config.m:
params.window_len = 128; % ~4s windows @ 32Hz
params.hop = 32; % 75% overlap
params.normalize_method = 'minmax';
params.ffnn_layers = [128 64 32];Results folder contains:
metrics.mat- All performance metricsconfusion_ffnn.png- Confusion matrixpca_2d.png,pca_3d.png- Feature space visualizationfeature_importance.png- Top featuresaccuracy_comparison.png- Model performance
Gait recognition using wearable sensor data | November 2025